NASA Datalink Communications Research & Technology Development For Aeronautics

Workshop for Integrated CNS Technologies
for

Advanced Future Air Transportation Systems
May 1-3, 2001
Cleveland, Ohio

K. (Gus) Martzaklis
NASA Glenn Research Center
Cleveland, OH 44135
(216) 433-8966
k.martzaklis@grc.nasa.gov

NASA Technology Goals

Integrated CNS Workshop, Cleveland, OH

May 1-3, 2001

NASA Technology Goals:

• **Safety:** Reduce the aircraft accident rate...

Aviation Safety

"Enable graphical weather in the cockpit"

 Capacity: Increase the aviation system throughput...

Aviation System Capacity

"Enable broadband communications for Free Flight"

Air Traffic to Triple in Next 20 Years

Mobility: Reduce public travel times...

Small Aircraft Transportation System

"Enable an airborne internet for SATS"

Technology Investment Areas

Integrated CNS Workshop, Cleveland, OH

May 1-3, 2001

- Datalink Requirements & Architecture Analyses:
 - Mid-Term (2010)
 - Far-Term (>2020)
- Air/Ground Datalinks
 - Ground-based (terrestrial)
 - Satellite-based
 - Airborne-based
- Network Technologies
 - Aeronautical Telecommunications Network (ATN)
 - Internet Protocol (IP)

(Focus: Commercial Air Transport and General Aviation)

Development Approach

Integrated CNS Workshop, Cleveland, OH

Technology & Implementation Readiness

Integrated CNS Workshop, Cleveland, OH

NAS Information Exchange

Integrated CNS Workshop, Cleveland, OH

May 1-3, 2001

Options:

- Analog Voice
- ACARS
- •VDL Modes 2-4
- Mode S
- •UAT
- SATCOM
- •HFDL
- Commercial
- Proprietary Links

Air Transport: Ground-based Datalinks

Integrated CNS Workshop, Cleveland, OH

May 1-3, 2001

USAF C-135C

Boeing Transport Cooperative Agreement

Honeywell Transport Cooperative Agreement

- •Phase I (FY98-00) efforts (Boeing & Honeywell) utilized off-the-shelf comm for rapid implementation (air phone, VHF/ACARS, ...)
- Optimal long-term operational end-solution may differ (VDL Mode 2, SATCOM)
- Recent In-Service-Eval's (ISE) of HI system by UAL (Electronic Flight Bag concept)

Air Transport: Ground-based Datalinks

Integrated CNS Workshop, Cleveland, OH

- •Grants with Ohio University to assess addressed VDL-Mode 2 datalink for weather dissemination.
- •VDL Mode 2 is future upgrade to ACARS
- Laboratory and initial flight testing by Ohio U (Piper Saratoga).

NASA Langley B757 Aircraft

- •Partnering with ARINC to jointly evaluate VDL-2 datalink performance for FIS (Weather) applications.
- •Experiments will include both signals-in-space as well as network characterization (ATN).
- •Hardware will be integrated on NASA B-757 research aircraft for upcoming flight experiments with ARINC ground-system.

Air Transport: Satellite-based Datalinks

Integrated CNS Workshop, Cleveland, OH

May 1-3, 2001

Worldwide Transport

Operational Evaluation: American Airlines
Operational B-777's Flying Chicago-Tokyo and
Chicago-Hong Kong Routes Beginning Summer
2001

WorldSpace

Air Transport: Satellite-based Datalinks

Integrated CNS Workshop, Cleveland, OH

- •Enabling technologies:
 - Phased array antennas
 - Broadband mobile terminal
- Joint NASA/Boeing development
- •Up to 1000x capacity increase
 - •256 Kbps off aircraft
 - •2.18 Mbps to aircraft
- Ground-mobile experiments
- •Proof flight test Dec, 2000 (DC-8)
- Upcoming B-757 experiments
- Enabling to Connexion by Boeing

General Aviation: Ground-based Datalinks

Integrated CNS Workshop, Cleveland, OH

May 1-3, 2001

- Cooperative NASA research with ARNAV and Honeywell (NavRadio)
- VHF-based broadcast & 2-way datalinks
 - VDL-Mode 2
 - •GMSK
- Addresses near-term need for broadcast of graphical weather to the G/A cockpit
- Resulting FAA/industry implementation:
 - •G/A focused service volume
 - Dual vendors (ARNAV & Honeywell)
 - •5 year FAA contract (FY00-04)
 - •2 national frequencies per vendor
 - Free text weather products
 - Fee-based value/graphical products

17,500 Ft. MSL

Altitude Coverage

5,000 Ft. AGL

General Aviation: Satellite-based Datalinks

Integrated CNS Workshop, Cleveland, OH

May 1-3, 2001

Flight test and evaluation of worldwide weather datalink capability using broadcast Satellite Digital Audio Radio Services (S-DARS).

Johannesburg, South Africa September, 1999

AfriStar Satellite

Patch Antenna Mounted to Cessna 172

Internal Equipment (GPS, Laptop Computer, etc.)

Satellite

Receiver

General Aviation: Satellite-based Datalinks

Integrated CNS Workshop, Cleveland, OH

Low-Altitude AutoMET Reporting

Integrated CNS Workshop, Cleveland, OH

May 1-3, 2001

NASA

- Use aircraft operating below 20,000 ft altitude to sense and report
 - Moisture
 - Temperature
 - Winds
- •To be used by:
 - Forecast models
 - Weather briefers
 - Controllers
 - Other aircraft
- •Investigating numerous airbornebased datalinks and architectures for technical feasibility

MDCRS & AMDAR Coverage from Transports

20,000 ft. MSL

AutoMET Coverage

Ground Level

AutoMET: Airborne-based Datalinks

Integrated CNS Workshop, Cleveland, OH

May 1-3, 2001

Airborne-based Datalinks:

- Extension of MDCRS service (ACARS/ARINC)
- VHF/GMSK (ARNAV Systems)
- VDL-Mode 2 (ARINC & HI)
- UAT (FAA Capstone & UPSAT)
- Satellite (OrbComm, others)
- ADS-B Datalinks (JH/APL)

NASA Cessna 206

Network Protocols Development

Integrated CNS Workshop, Cleveland, OH

May 1-3, 2001

NASA

- Collaborative tasks with MIT/Lincoln Laboratory for FIS/Weather:
 - ATN and Internet Protocol
 (Mobile IP) network feasibility
 - •IP-over-VDL Mode 2 datalink interface definition
- Joint NASA/ARINC research on IP over VDL-Mode 2 datalink for FIS
- •ATN over broadband SATCOM feasibility (Space Act Agmt w/ATNSI)
- •Next-generation Mobile IP research for aeronautical app's (CNS, Inc.)

Network Routing Connectivity

FAA/NASA Alliance

Integrated CNS Workshop, Cleveland, OH

- FIS Datalink & Weather Requirements Offices (AUA & ARW)
 - Co-funded tasks under NASA/FAA Memo of Agreement:
 - Low-altitude AutoMET datalink technical architecture alternatives
 - FIS/Weather datalink technical architecture analyses:
 - Mid-Term (2004-2007)
 - Far-Term (2010 and beyond)
 - Terminal area weather datalink communications alternatives
- Office of Architecture and System Engineering (ASD)
 - Joint Research Project Definitions (JRPDs):
 - FIS and ATM datalink architecture analyses
 - Terminal area broadband communications
- CAPSTONE Program (Alaska)
 - UAT datalink investigation for AutoMET; SATCOM augmentation

New Activity: SATS Airborne Internet

Integrated CNS Workshop, Cleveland, OH

- A communications architecture for internet-like information delivery
 - Aircraft and ground facilities are interconnected nodes on a highspeed digital network
 - Open standards and protocols
- A network management system that provides:
 - Mobile and policy-based routing
 - Service priority communications
 - Interface to onboard aircraft subnet(s)
 - Secure network communications
 - Point-to-point, point-to-multipoint, and broadcast addressing
- A communications management system for integrating multiple CNS datalinks and sensors.

(Illustration courtesy of Rockwell-Collins)

Observations, Questions and Issues

Integrated CNS Workshop, Cleveland, OH

- There is a great need for an <u>integrated systems</u> approach to developing CNS systems
 - Technology development
 - Modernization
- Spectrum management:
 - Enough spectrum capacity for the far-term?
 - Non-aviation threats to aviation spectrum
- There is a need for CNS systems modeling and simulation capability
- The VDL Mode 2 / Mode 3 / 8.33 debate: is there a need for NASA technical involvement? Technical issues to address?
- Should NASA focus only on far-term (>2020), mid-term (2010), both ?

Observations, Questions and Issues

Integrated CNS Workshop, Cleveland, OH

- What's the future of IP and ATN in aviation? Where should NASA's communications network research focus?
- Aviation community needs to advocate CNS much more strongly for both
 - Technology development and validation
 - Modernization efforts